机械向量,旋转和张量

机械向量,旋转和张量
页面内容

向量

任何既有大小又有方向的量叫做矢量。速度、加速度和力是机械矢量的几个例子。

因此,根据上面的定义,每个向量都有两个分量:大小分量和方向分量。

表示的向量

在三维空间中,一个向量由它的X、Y、Z分量表示。向量的大小部分用数字矩阵表示,向量的方向部分用单位向量矩阵表示。

在相邻的图中,向量一个,它有三个标量分量ax,唉,阿兹和三个单位向量i, j, k沿X, Y, Z可表示为:

一个斧头我+J +阿兹k ........................( 1.1)

向量表示1

在向量的矩阵表示中,向量的起始点被隐式地认为是表示坐标系的原点,这就是向量与点的不同之处。

以上向量也可以用矩阵形式表示为:

图像信用:维基百科

向量与另一个向量的乘法

以下Mathcad示例显示了两个向量的内部产品:

向量表示2

结果是20,这是一个标量。因此,可以得出两个向量的内积产生一个标量。

矢量与标量的乘法

向量表示3

所以,通过乘以一个标量,向量的所有三个分量都成比例增大了,换句话说,向量改变了它的大小而不改变它的方向。

张量

通过,现在您知道如果您只想在不改变其方向的情况下只更改向量的幅度,您将使用标量数量的向量乘法。

如果您想创建具有不同幅度的新矢量以及方向(比初始向量)(初始向量),则必须将初始向量乘以另一种称为a的数学实体张量。

张量是一种更广泛的标量和矢量形式。或者,标量是张量的特殊情况。

  • 如果一个张量只有大小而没有方向(即0阶张量),那么它就是标量。
  • 如果一个张量有大小和一个方向(即秩1张量),那么它被称为向量。
  • 如果一个张量有大小和两个方向(即二级张量),那么它被称为二分体。
  • 等等…

请注意,在"方向”术语"维。”所有张量的类型(标量、矢量和二元)都可以在三维空间或坐标系中定义。

对于描述一个秩1张量,一个下标应该是充分的。参考的图1以及这个向量的矩阵表示一个以上是为了更清楚。你可以把力向量作为实际例子。

为了描述二级张量或二分体,我将使用机械应力张量的例子如下:

固体的不同应力分量

请注意,应力张量矩阵的每个应力分量都有两个下标,第一个下标是面积法向的方向(x2 -x3曲面的面法向为1,以此类推),第二个下标是应力分量的方向。

因此,应力张量(Dyad或rank-2张量)具有两个方向,即面积正常和应力分量方向的方向。

图像信用:维基百科

机械矢量旋转

比如说,你有一个矢量,你想改变它的方向那么你就必须进行矢量旋转。

为了旋转这个向量,将这个向量与旋转矩阵相乘就会得到旋转后的向量。

绕x的矢量旋转

在上面的例子中,向量一个角θ绕X轴旋转b生产。

绕y矢量旋转

在上面的例子中,向量一个角θ绕Y轴旋转b生产。

绕z矢量旋转

在上面的例子中,向量一个角θ绕Z轴旋转b生产。

请注意,旋转矩阵也是3x3矩阵,但这不一定是张量。张量是物理对象,并且在张量矩阵中,它之间存在某些关系。

结论

张量是向量和标量的广义形式。不可能所有矩阵都是张量酉;要成为张量,矩阵元素之间必须具有一定的关系。一个向量可以通过乘以一个旋转矩阵来旋转。

参考: